Wish List 0

Gy Us42 I2C Pixhawk Apm Flight Control Ultrasonic Distance Measurement Module

Rs. 809.00 Rs. 996.00

-GY-US42 is a high-quality rangefinder sensor module.
-Working voltage 3-5V, power consumption, small size, easy installation.
-Its working principle is: the probe emits ultrasonic waves, after being irradiated to the measured object, the probe receives and returns the acoustic wave, and utilizes the time difference to calculate the actual distance.
-Module has 3 ways to read data: Serial UART (TTL level), IIC, pulse PWM mode.
-The serial port baud rate 9600bps and 115200bps, configurable, continuous, ask for the output of two ways. Power-save settings.
-IIC can modify the internal address to facilitate an IIC bus to connect multiple modules at the same time.
-Pulse PWM output, same as SR04. Module can adapt to different working environment, direct link with the microcontroller.
-Connect the computer when you need USB to TTL module, direct connection.
-IIC mode can be direct, APM, Pixhawk and other flight control links.
-Provide arduino, 51, stm32 microcontroller communication procedures.
-Does not provide schematics and internal microcontroller source.
-As a result of sending and receiving integrated ultrasonic probe, ranging blind range of about 20cm, ranging within 20cm is invalid.
-Pixhawk APM Reference Settings Website:

Product Features:
-Power supply 3-5V
-Built-in MCU calculates the distance
-IIC, serial port, PWM communication format
-Close 40HZ measurement cycle
-With the corresponding PC software
-Integrated probe, small size
  
Application:
-smart robot
-Teaching laboratory equipment
-Production line product testing
-Quadrocopter
-Human body measurement
-Intelligent car

SPECIFICATIONS:
Measuring range          20cm ~ 720cm (VCC = 5V)
Resolution               1cm
Response frequency       15HZ (full range)
Working voltage          3-5V
Working current          9mA (VCC = 5V)
Operating temperature    -20 degrees Celsius ~ 65 degrees Celsius
Storage temperature      -40 degrees Celsius to 85 degrees Celsius
Size                     21.5 x 21 x 24.5mm

OVERVIEW:

-Power supply 3-5V

-Built-in MCU calculates the distance

-IIC, serial port, PWM communication format

-Close 40HZ measurement cycle

-With the corresponding PC software

-Integrated probe, small size

PACKAGE INCLUDES:

1 PCS x Gy Us42 I2C Pixhawk Apm Flight Control Ultrasonic Distance Measurement Module



//SOURCE CODE TAKEN FROM BELOW LINK

//https://www.maxbotix.com/articles/095.htm#loading

/*                   Arduino I2C for a MaxSonar                         */

//////////////////////////////////////////////////////////////////////////

//  Arduino I2C for a MaxSonar by Carl Myhre is licensed under a        //

//  Creative Commons Attribution-ShareAlike 4.0 International License.  //

//  Original Author:  Carl Myhre, 10-02-2014, Revision: 1.0             //

//  Modifications by:                                                   //

//                                                                      //

//  Revision History: 1.0 -- 10-02-2014 -- Created initial code build   //

//                                                                      //

//  The original I2C libraries were created by Peter Fleury             //

//    http://homepage.hispeed.ch/peterfleury/avr-software.html          //

//                                                                      //

//  These libraries were adapted by Bernhard Nebel for use on Arduino   //

//    https://github.com/felias-fogg/SoftI2CMaster                      //

//                                                                      //

//  Special Thanks to MaxBotix Inc. for sponsoring this project!        //

//    http://www.maxbotix.com -- High Performance Ultrasonic Sensors    //

//                                                                      //

//  For more information on installing the I2C libraries for Arduino    //

//    visit http://playground.arduino.cc/Main/SoftwareI2CLibrary        //

//////////////////////////////////////////////////////////////////////////


//Hints on installing this code:

// 1. You will need to install the <SoftI2CMaster.h> library before using this code.

//      On Windows, the files are placed in C:\Program Files (x86)\Arduino\libraries\SoftI2CMaster\

// 2. As of 10-02-14 the Arduino library page (reference above) has the wrong name for the include file

//      it lists <SoftI2C.h> instead of <SoftI2CMaster.h> -- use the one that matches your installation.

// 3. Make sure to load the library into the Arduino compiler. 

//      To do this go to: SKETCH >> IMPORT LIBRARY... >> ADD LIBRARY...

//      Then navigate to C:\Program Files (x86)\Arduino\libraries\SoftI2CMaster\SoftI2CMaster.h

// 4. Be sure to set the SCL and SDA pins so that they match the pins you are using.

// 5. I have included 3 working "code examples" which differ from the 3 "functions" I included.

//      The functions are all that should be required to quickly use the I2C library to talk to a MaxSonar.

//      The three code examples show how I would implement each of the common tasks you may wish to do.

// 6. The included functions are as follows:

//      A. start_sensor(addr)

//      B. read_sensor(addr)

//      C. change_address(oldaddr,newaddr)

// 7. The included code examples are as follows:

//      A. read_the_sensor_example()

//      B. address_polling_example()

//      C. default_address_change_example()

// 8. You do not have to keep track of the error codes passed out by the installed functions if you do not want to.

//      I inluded the error tracking so that it was easy for others to build a reliable system -- and to ease

//      troubleshooting. (not using it makes for cleaner code if you trust your interface)


/*

Below, I define the SCL and SDA pins by their ATMEGA pins I have included links to common mappings below.

    UNO:  http://arduino.cc/en/Hacking/PinMapping168

    NANO: (matches UNO but has fewer pins)

    MEGA 2560: http://arduino.cc/en/Hacking/PinMapping2560

The current data matches the setup for the Arduino Uno -- they may need to be changed if the hardware changes.

You can also switch the I2C interface

to any of the tristate pins that you want (not just the SDA or SCL pins).

*/

#define SCL_PIN 5              //Default SDA is Pin5 PORTC for the UNO -- you can set this to any tristate pin

#define SCL_PORT PORTC 

#define SDA_PIN 4              //Default SCL is Pin4 PORTC for the UNO -- you can set this to any tristate pin

#define SDA_PORT PORTC

#define I2C_TIMEOUT 100        //Define a timeout of 100 ms -- do not wait for clock stretching longer than this time


/*

I have included a couple of extra useful settings for easy reference.

//#define I2C_CPUFREQ (F_CPU/8)//Useful if you plan on doing any clock switching

#define I2C_FASTMODE 1         //Run in fast mode (400 kHz)

#define I2C_SLOWMODE 1         //If you do not define the mode it will run at 100kHz with this define set to 1 it will run at 25kHz

*/

#include <SoftI2CMaster.h>     //You will need to install this library


void setup(){

  // Initialize both the serial and I2C bus

  Serial.begin(9600);

  i2c_init();


  // (OPTIONAL) Check each address for a sensor

  address_polling_example();


  /* 

    Note that I placed the address change example in setup() for a good reason.

    Changing the sensor address causes an EEPROM write, there should only be ~1,000,000+

      of these writes to the sensor microcontroller over its product lifetime.

    Changing the address is fine, but doing it every second for the next 4 years may

      cause reliability issues.

  */

  // (OPTIONAL) Run an address change example

  default_address_change_example();  


  // Your code here

}


void loop()

{

  // (OPTIONAL) Read a sensor at the default address

  read_the_sensor_example();

  

  // Your code here


}




///////////////////////////////////////////////////

// Function: Start a range reading on the sensor //

///////////////////////////////////////////////////

//Uses the I2C library to start a sensor at the given address

//Collects and reports an error bit where: 1 = there was an error or 0 = there was no error.

//INPUTS: byte bit8address = the address of the sensor that we want to command a range reading

//OUPUTS: bit  errorlevel = reports if the function was successful in taking a range reading: 1 = the function

// had an error, 0 = the function was successful

boolean start_sensor(byte bit8address){

  boolean errorlevel = 0;

  bit8address = bit8address & B11111110;               //Do a bitwise 'and' operation to force the last bit to be zero -- we are writing to the address.

  errorlevel = !i2c_start(bit8address) | errorlevel;   //Run i2c_start(address) while doing so, collect any errors where 1 = there was an error.

  errorlevel = !i2c_write(81) | errorlevel;            //Send the 'take range reading' command. (notice how the library has error = 0 so I had to use "!" (not) to invert the error)

  i2c_stop();

  return errorlevel;

}




///////////////////////////////////////////////////////////////////////

// Function: Read the range from the sensor at the specified address //

///////////////////////////////////////////////////////////////////////

//Uses the I2C library to read a sensor at the given address

//Collects errors and reports an invalid range of "0" if there was a problem.

//INPUTS: byte  bit8address = the address of the sensor to read from

//OUPUTS: int   range = the distance in cm that the sensor reported; if "0" there was a communication error

int read_sensor(byte bit8address){

  boolean errorlevel = 0;

  int range = 0;

  byte range_highbyte = 0;

  byte range_lowbyte = 0;

  bit8address = bit8address | B00000001;  //Do a bitwise 'or' operation to force the last bit to be 'one' -- we are reading from the address.

  errorlevel = !i2c_start(bit8address) | errorlevel;

  range_highbyte = i2c_read(0);           //Read a byte and send an ACK (acknowledge)

  range_lowbyte  = i2c_read(1);           //Read a byte and send a NACK to terminate the transmission

  i2c_stop();

  range = (range_highbyte * 256) + range_lowbyte;  //compile the range integer from the two bytes received.

  if(errorlevel){

    return 0;

  }

  else{

    return range;

  }

}




/////////////////////////////////////////

// Function: Change the sensor address //

/////////////////////////////////////////

//Uses the I2C library to change the address of a sensor at a given address

//Collects and reports an error bit where: 1 = there was an error or 0 = there was no error.

//INPUTS: byte oldaddress = the current address of the sensor that we want to change

//INPUTS: byte newddress  = the address that we want to change the sensor to

//OUPUTS: bit  errorlevel = reports if the function was successful in changing the address: 1 = the function had an

//      error, 0 = the function was successful

boolean change_address(byte oldaddress,byte newaddress){

  //note that the new address will only work as an even number (odd numbers will round down)

  boolean errorlevel = 0;

  oldaddress = oldaddress & B11111110;  //Do a bitwise 'and' operation to force the last bit to be zero -- we are writing to the address.

  errorlevel = !i2c_start(oldaddress) | errorlevel; //Start communication at the new address and track error codes

  errorlevel = !i2c_write(170) | errorlevel;        //Send the unlock code and track the error codes

  errorlevel = !i2c_write(165) | errorlevel;        //Send the unlock code and track the error codes

  errorlevel = !i2c_write(newaddress) | errorlevel; //Send the new address

  i2c_stop();

  return errorlevel;

}




//////////////////////////////////////////////////////////

// Code Example: Read the sensor at the default address //

//////////////////////////////////////////////////////////

void read_the_sensor_example(){

  boolean error = 0;  //Create a bit to check for catch errors as needed.

  int range;

  

  //Take a range reading at the default address of 224

  error = start_sensor(224);    //Start the sensor and collect any error codes.

  if (!error){                  //If you had an error starting the sensor there is little point in reading it as you will get old data.

    delay(100);

    range = read_sensor(224);   //reading the sensor will return an integer value -- if this value is 0 there was an error

    Serial.print("R:");Serial.println(range);

  }

}




////////////////////////////////////////////////////////////////

// Code Example: Poll all possible addresses to find a sensor //

////////////////////////////////////////////////////////////////

void address_polling_example(){

  boolean error = 0;  //Create a bit to check for catch errors as needed.

  int range = 0;

  Serial.println("Polling addresses...");

 

  //Walk through all possible addresses and check for a device that can receive the range command and will

  //    return two bytes.

  for (byte i=2; i!=0; i+=2){   //start at 2 and count up by 2 until wrapping to 0. Checks all addresses (2-254) except 0 (which cannot be used by a device)

    error = 0;

    error = start_sensor(i);    //Start the sensor and collect any error codes.

    if (!error){                //If you had an error starting the sensor there is little point in reading it.

      delay(100);

      range = read_sensor(i);   //reading the sensor will return an integer value -- if this value is 0 there was an error

      Serial.println(i);

      if (range != 0){

        Serial.print("Device found at:");Serial.print(i);Serial.print(" Reported value of:");Serial.println(range);

      }  

    }

    else{

      Serial.print("Couldn't start:");Serial.println(i);

    }

  }


  Serial.println("Address polling complete.");

}




//////////////////////////////////////////////

// Code Example: Change the default address //

//////////////////////////////////////////////

void default_address_change_example(){

  boolean error = 0;  //Create a bit to check for catch errors as needed.

  int range;

  

  Serial.println("Take a reading at the default address");

  

  //Take a range reading at the default address of 224

  error = start_sensor(224);    //Start the sensor and collect any error codes.

  if (!error){                  //If you had an error starting the sensor there is little point in reading it.

    delay(100);

    range = read_sensor(224);   //reading the sensor will return an integer value -- if this value is 0 there was an error

    Serial.print("R:");Serial.println(range);

  }

  

   Serial.println("Change the sensor at the default address to 222");

  //Change the address from 224 to 222

  error = 0;

  error = change_address(224,222);  //Change the address -- I don't do anything with the error handler at this point but you can if you want.

  delay(200);    //Wait 125ms for the sensor to save the new address and reset

  

   Serial.println("Take a reading at the new address");

  

  //Take a range reading at the new address of 222

  error = 0;

  error = start_sensor(222);     //Same as above but at the new address

  if (!error){

    delay(100);

    range = read_sensor(222);

    Serial.print("N:");Serial.println(range);

  }  

  

   Serial.println("Change the sensor back to the default address");  

  

  //Change the address from 222 to 224

  error = 0;

  error = change_address(222,224);

  delay(200);    //Wait 125ms for the sensor to save the new address and reset

}


15 days

Write a review

Please login or register to review